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CVXMG is a python based package that allows the users to compute the sizing of Isolated/Islanded MicroGrids
(IMGs). Additionally to the sizing of the IMGs, CVXMG returns the optimal dispatch of the energy sources and the
optimal tariffs for the energy. CVXMG allows implementing Demand Side Management (DSM) in the sizing of the
IMGs. The user of CVXMG can choose seven different DSM strategies based on dynamic pricing of the energy and
one DSM based on direct control of the loads:

• Time of Use of two price levels

• Time of Use with an incentive for solar generation

• Time of use of three levels of price

• Critical Peak Pricing

• Day-Ahead Dynamic Pricing

• Fixed Shape Pricing

• Incentive Based Pricing

• Directly Curtailing the Electrical Demand

CVXMG allows for creating different business models for IMG projects. CVXMG allows defining the percentage of
public or private funding for the project. CVXMG defines the energy’s tariffs for the customers using the business
model information and the share of public and private financing. These capabilities make CVXMG a worth looking
tool for different analyses for IMG planners and policymakers.

CVXMG uses CVXPY at its core. CVXPY is a Python-embedded modeling language for convex optimization prob-
lems. CVXPY allows CVXMG to build and solve deterministic and stochastic convex formulations to perform the
analysis of the IMGs. Due to the speed of solution of convex formulations, CVXMG can perform a multiyear analysis
in seconds! Moreover, CVXMG can execute multiyear stochastic analysis in a regular machine.
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CHAPTER 1

Installing CVXMG

CVXMG can be easily installed using PyPi or downloading the GitHub repository. To install CVXMG just execute
the following in your line of commands:

pip install cvxmg

Tip: The installation of CVXPY can raise errors in Windows if the user do not have Visual Studio build tools for
Python 3. To solve this issue please refer to the installation official page of CVXPY, carefully read and follow the
instructions explained there.
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https://pypi.org/project/cvxmg/
https://github.com/juancaoviedo/cvxmg
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https://www.cvxpy.org/install/
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CHAPTER 2

Using CVXMG

CVXMG uses two simple dictionaries “prob_info” and “sources_info” to create different architectures of IMGs. These
two dictionaries are attributes for the constructor classes. CVXMG offers three different constructor classes: One for
deterministic analysis, one for multiyear analysis, and one for multiyear stochastic analysis. Each of the constructors
uses the information of “prob_info” to know the architecture of the IMG and the information of “sources_info” to
know the characteristics of the energy sources. CVXMG creates the energy sources of the IMG as objects using the
Objected Oriented Programming capabilities offered by Phyton. The use of objects for the energy sources allows
CVXMG to build the optimization formulation of the problem using a Plug and Play approach.

Once the user defines “prob_info” and “sources_info” needs to execute a constructor. For more info on how to set
“prob_info” and “sources_info,” please refer to the example section. Suppose the user wants to compute the sizing of
an IMG using a deterministic analysis of one year. In that case, the user must execute the following command:

from cvxmg import cvxmg as cm
MicroGrid = cm.DeterministicDSMS(prob_info, sources_info)

The above line of commands will create the structure of the IMG in the object MicroGrid. Additionally, it will
guarantee that all the optimization formulation follows the Disciplined Convex Programming rules already established
in CVXPY. However, at this moment, CVXMG did not solve the formulation yet. To solve the formulation, the user
needs to execute the solve method:

MicroGrid.solveMG()

The above commands will solve the formulation and will store the results in the MicroGrid object. To extract the
results, the user must execute:

summary, dispatch_results = MicroGrid.resultsMG()

The above line of commands will create a pandas structure in the variable summary with the sizing results’ essential
variables. Additionally, the method will create another pandas structure to store the dispatch results of energy sources.

Finally, if the user wants to create some predetermined plots of the results can call the method plotMG:

MicroGrid.plotMG()

The following are the contents of this guide:

5
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2.1 Setting the informationf of the IMG

A crucial part of the process using CVXMG is defining the information of the project. To do so, CVXMG needs to
dictionaries, “prob_info” and “sources_info”. In the following lines present a brief description of how to create the
dictionaries “prob_info” and “sources_info”.

2.1.1 Setting “prob_info”

CVXMG provides two .csv files to make easier setting the data of “prob_info”.

The file named config.csv contains the information about the architecture of the IMG. The file named resourcedata.csv
cointains the information of the primary energy resources. CVXMG provides one function to read the data of con-
fig.csv and three different functions to read the reorcedata.csv file. The function to read config.csv is “variables”. The
three functions to import the resource data are: resources_norm, resources_all and resources_noise. These functions
are crucial for the multyyear analysis and the stochastic analysis. For more information about these functions, please
refer to the docs of the functions.

The user must do the following to import the information of prob_info dictionary:

import pandas as pd
from cvxmg import cvxmg as cm # Import cvxmg

#region to read the parameters to intialize the code
prob_info = {}
variables_csv = pd.read_csv('config.csv', sep=';', header=None, skip_blank_
→˓lines=True)
prob_info['project_life_time'], prob_info['interest_rate'], prob_info['scenarios'],
→˓prob_info["years"], prob_info["scala"], prob_info["prxo"], prob_info["percentage_
→˓yearly_growth"], prob_info["percentage_variation"], prob_info["dlcpercenthour"],
→˓prob_info["dlcpercenttotal"], prob_info["sen_ince"], prob_info["sen_ghi"], prob_
→˓info["elasticity"], prob_info["curtailment"], prob_info["capex_private"], prob_info[
→˓"capex_gov"], prob_info["capex_community"], prob_info["capex_ong"], prob_info["opex_
→˓private"], prob_info["opex_gov"], prob_info["opex_community"], prob_info["opex_ong
→˓"], prob_info["rate_return_private"], prob_info["max_value_tariff"], prob_info[
→˓'drpercentage'], prob_info['diesel_system'], prob_info['pv_system'], prob_info[
→˓'battery_system'], prob_info['wind_system'], prob_info['hydro_system'], prob_info[
→˓'hydrogen_system'], prob_info['gas_system'], prob_info['biomass_system'], prob_info[
→˓'flat'], prob_info['tou'], prob_info['tou_sun'], prob_info['tou_three'], prob_info[
→˓'cpp'], prob_info['dadp'], prob_info['shape_tar'], prob_info['ince'], prob_info[
→˓'dilc'], prob_info['residential'],prob_info['commercial'],prob_info['industrial'],
→˓prob_info['community'] = cm.variables(variables_csv)
#endregion

#region to read the weather data, the load and resource availability for the community
data_csv = pd.read_csv('resourcedata.csv', sep=';', header=None, skip_blank_
→˓lines=True)
prob_info["ghi"], prob_info["irrdiffuse"], prob_info["temperature"], prob_info["wind
→˓"], prob_info["hydro"], prob_info["load_residential"], prob_info["load_commercial"],
→˓ prob_info["load_industrial"], prob_info["load_community"] = cm.resources_norm(data_
→˓csv, years=prob_info["years"], scenarios=prob_info["scenarios"], percentage_yearly_
→˓growth=prob_info["percentage_yearly_growth"])
#endregion

6 Chapter 2. Using CVXMG
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2.1.2 Setting “sources_info”

The information of “sources_info” specify the characteristics of the energy sources. Each energy source expect dif-
ferent parameters. “sources_info” is a nested dictionary. To create “sources_info”, the user first must initialize the
dictionary:

sources_info = {}

If the user wants to create the information of a Battery Energy Storage System must execute:

sources_info = {
# Battery Energy Storage System info
"bess_1" : {

"life_time" : 2,
"investment_cost" : 420, # USD
"fuel_function" : 0, #

→˓Fuel function
"fuel_cost" : 0, # USD
"maintenance_cost" : 6, #

→˓Percentage of the capacity
"min_out_power" : 50, #

→˓Percentage of the capacity
"max_out_power" : 100, #

→˓Percentage of the capacity
"rate_up" : 1, #

→˓Percentage of the capacity
"rate_down" : 1, #

→˓Percentage of the capacity
"initial_charge" : 50, #

→˓Percentage of the capacity
}
}

If the user wants to create the information of a Diesel Generator must execute:

sources_info = {
# Diesel generator info
"diesel_gen_1" : {

"life_time" : 3,
"investment_cost" : 550, # USD
"fuel_function" : np.array([0.246, 0.08415]), #

→˓Fuel function
# "fuel_function" : np.array([0.000203636364, 0.224872727, 4.22727273]), #

→˓Fuel function
"fuel_cost" : 0.8, # USD
"maintenance_cost" : 6, #

→˓Percentage of the capacity
"min_out_power" : 0, #

→˓Percentage of the capacity
"max_out_power" : 100, #

→˓Percentage of the capacity
"rate_up" : 1, #

→˓Percentage of the capacity
"rate_down" : 1, #

→˓Percentage of the capacity
}
}

2.1. Setting the informationf of the IMG 7
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If the user wants to create the information of a Photovoltaic System must execute:

sources_info = {
# Photovoltaic system info
"pv_gen_1" : {

"life_time" : 25,
"investment_cost" : 1300, # USD
"maintenance_cost" : 6, #

→˓Percentage of the capacity
"rate_up" : 1, #

→˓Percentage of the capacity
"rate_down" : 1,
"derat" : 1, # Derating factor
"pstc" : 0.3, # Nominal capacity of the ov module

→˓ # Percentage of the capacity
"Ct" : -0.0039, # Termic coefficient of the pv module

}
}

If the user wants to create the information of the wind generation System must execute:

sources_info = {
# Wind generator info
"wind_gen_1" : {

"life_time" : 15,
"investment_cost" : 2000, # USD
"maintenance_cost" : 5, #

→˓Percentage of the capacity
"rate_up" : 1, #

→˓Percentage of the capacity
"rate_down" : 1,
"rated_speed" : 13,
"speed_cut_in" : 3,
"speed_cut_out" : 12.5,
"nominal_capacity" : 1,

}
}

It is crucial to specify the information of the lack of energy and the excess of energy in “sources_info”. The user can
use this information to control the desired level of reliability of the microgrid and to associate a cost to these values.
To create this information the user must execute:

sources_info = {
# Lack of energy info
"lack_ene" : {

"cost_function" : 0, #
→˓Cost function

"reliability" : 2, #
→˓Percentage of reliability #
→˓Percentage of the capacity
},

# Excess of energy info
"excess_ene" : {

"cost_function" : 0, #
→˓Cost function

"reliability" : 2, #
→˓Percentage of reliability (continues on next page)

8 Chapter 2. Using CVXMG
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(continued from previous page)

}
}

2.2 Types of constructors for the IMG

CVXMG have three different types of constructors that perform different analysis for IMGs. All the constructors hace
the following constraints: * One constraint to perform the energy balance of the IMG. * One constraint to guarantee
that the total delivered energy remains cosntant after the aplication of the DSM. * One constraint to guarantee that the
lack of energy do not exceed the desired reliability. * One constraint to guarantee that the excess of energy do not
exceed the desired reliability. * One constraint to guarantee that the private investors recover their investments and the
desired return of investment.

The only difference between them is the horizon of optimization (one year, multiyear) and the type of analysis (deter-
ministic, stochastic).

A brief description of each of the constructors proceeds.

2.2.1 DeterministicDSMS

The deterministic constructor performs the sizing of the microgrid considering one year of operation. Additionlly, as
the name suggests, the deterministic constructor use a deterministic analysis.

To use this constructor the user must execute:

import cvxmg as cm
MicroGrid = cm.DeterministicDSMS(prob_info, sources_info)

2.2.2 MultiyearDSMS

The multiyear constructor performs the sizing of the microgrid considering one or several years of operation. The
number of years are specified by the user in “prob_info” dictionary. The multiyear constructor use a deterministic
analysis. The multy year constructor implements the adaptative method described in [pece2019]. However, the multy
year analysis here does not consider three day each month as the authors propose in the article. The multy-year analysis
here considers the full year analysis (8760 hours).

To use this constructor the user must execute:

import cvxmg as cm
MicroGrid = cm.MultiyearDSMS(prob_info, sources_info)

2.2.3 StochasticDSMS

The stochastic constructor performs the sizing of the microgrid considering one or several years of operation. However,
the stochastic constructor performs a stochastic analysis. By using the functions resources_norm, resources_all and
resources_noise CVXMG creates the data to perform the multiyear stochastic analysis. This constructor requires that
the user specify the number of years for the multiyear analysis and the number of escenarios for the stochastic analysis.

To use this constructor the user must execute:

2.2. Types of constructors for the IMG 9
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import cvxmg as cm
MicroGrid = cm.StochasticDSMS(prob_info, sources_info)

2.3 Example of how to use CVXMG

Imagine that a user wants to compute the sizing of an IMG with photovoltaic panels, a diesel generator , a wind
generator and a battery energy storage system, using a stochastic analysis. To do so, the user must first create the
information for “prob_info” and “sources_info”. Afterwards, the user must set the constructor and solve the problem.
The following lines present a brief example using the multiyear constructor.

2.3.1 First step: Create the information of “prob_info” and “sources_info”

To import the information of prob_info dictionary, must do the following:

import numpy as np # Library to work with arrays
→˓and math
import pandas as pd # Library for date frames
→˓handling
import cvxpy as cp # Library for convex
→˓optimization
import cvxmg as cm # Library for the planning of
→˓Islanded Microgrids
import matplotlib.pyplot as plt # Ploting command
plt.style.use('default') # Restore default values for
→˓graphs

#region to read the parameters to intialize the code
prob_info = {}
variables_csv = pd.read_csv('config.csv', sep=';', header=None, skip_blank_
→˓lines=True)
prob_info['project_life_time'], prob_info['interest_rate'], prob_info['scenarios'],
→˓prob_info["years"], prob_info["scala"], prob_info["prxo"], prob_info["percentage_
→˓yearly_growth"], prob_info["percentage_variation"], prob_info["dlcpercenthour"],
→˓prob_info["dlcpercenttotal"], prob_info["sen_ince"], prob_info["sen_ghi"], prob_
→˓info["elasticity"], prob_info["curtailment"], prob_info["capex_private"], prob_info[
→˓"capex_gov"], prob_info["capex_community"], prob_info["capex_ong"], prob_info["opex_
→˓private"], prob_info["opex_gov"], prob_info["opex_community"], prob_info["opex_ong
→˓"], prob_info["rate_return_private"], prob_info["max_value_tariff"], prob_info[
→˓'drpercentage'], prob_info['diesel_system'], prob_info['pv_system'], prob_info[
→˓'battery_system'], prob_info['wind_system'], prob_info['hydro_system'], prob_info[
→˓'hydrogen_system'], prob_info['gas_system'], prob_info['biomass_system'], prob_info[
→˓'flat'], prob_info['tou'], prob_info['tou_sun'], prob_info['tou_three'], prob_info[
→˓'cpp'], prob_info['dadp'], prob_info['shape_tar'], prob_info['ince'], prob_info[
→˓'dilc'], prob_info['residential'],prob_info['commercial'],prob_info['industrial'],
→˓prob_info['community'] = cm.variables(variables_csv)
#endregion

#region to read the weather data, the load and resource availability for the community
data_csv = pd.read_csv('resourcedata.csv', sep=';', header=None, skip_blank_
→˓lines=True)
prob_info["ghi"], prob_info["irrdiffuse"], prob_info["temperature"], prob_info["wind
→˓"], prob_info["hydro"], prob_info["load_residential"], prob_info["load_commercial"],
→˓ prob_info["load_industrial"], prob_info["load_community"] = cm.resources_norm(data_
→˓csv, years=prob_info["years"], scenarios=prob_info["scenarios"], percentage_yearly_
→˓growth=prob_info["percentage_yearly_growth"]) (continues on next page)
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(continued from previous page)

#endregion

To define the characteristics of the energy sources that the IMG will use the user must do the following:

#region to set the characteristics of the energy sources

sources_info = {
# Battery Energy Storage System info
"bess_1" : {

"life_time" : 2,
"investment_cost" : 420, #

→˓USD
"fuel_function" : 0, #

→˓Fuel function
"fuel_cost" : 0, #

→˓USD
"maintenance_cost" : 6, #

→˓Percentage of the capacity
"min_out_power" : 50, #

→˓Percentage of the capacity
"max_out_power" : 100, #

→˓Percentage of the capacity
"rate_up" : 1, #

→˓Percentage of the capacity
"rate_down" : 1, #

→˓Percentage of the capacity
"initial_charge" : 50, #

→˓Percentage of the capacity
},

# Diesel generator info
"diesel_gen_1" : {

"life_time" : 3,
"investment_cost" : 550, #

→˓USD
"fuel_function" : np.array([0.246, 0.08415]), #

→˓Fuel function
# "fuel_function" : np.array([0.000203636364, 0.224872727, 4.22727273]), #

→˓Fuel function
"fuel_cost" : 0.8, #

→˓USD
"maintenance_cost" : 6, #

→˓Percentage of the capacity
"min_out_power" : 0, #

→˓Percentage of the capacity
"max_out_power" : 100, #

→˓Percentage of the capacity
"rate_up" : 1, #

→˓Percentage of the capacity
"rate_down" : 1, #

→˓Percentage of the capacity
},

# Photovoltaic system info
"pv_gen_1" : {

"life_time" : 25,
"investment_cost" : 1300, #

→˓USD (continues on next page)

2.3. Example of how to use CVXMG 11
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(continued from previous page)

"maintenance_cost" : 6, #
→˓Percentage of the capacity

"rate_up" : 1, #
→˓Percentage of the capacity

"rate_down" : 1,
"derat" : 1, # Derating factor
"pstc" : 0.3, # Nominal capacity of the ov module

→˓ # Percentage of the capacity
"Ct" : -0.0039, # Termic coefficient of the pv module

},

# Wind generator info
"wind_gen_1" : {

"life_time" : 15,
"investment_cost" : 2000, #

→˓USD
"maintenance_cost" : 5, #

→˓Percentage of the capacity
"rate_up" : 1, #

→˓Percentage of the capacity
"rate_down" : 1,
"rated_speed" : 13,
"speed_cut_in" : 3,
"speed_cut_out" : 12.5,
"nominal_capacity" : 1,

},

# Lack of energy info
"lack_ene" : {

"cost_function" : 0, #
→˓Cost function

"reliability" : 2, #
→˓Percentage of reliability #
→˓Percentage of the capacity

},

# Excess of energy info
"excess_ene" : {

"cost_function" : 0, #
→˓Cost function

"reliability" : 2, #
→˓Percentage of reliability

}
}

#endregion

2.3.2 Second step: Set the constructor

To use the constructor, the user must execute the following:

MicroGrid = cm.StochasticDSMS(prob_info_input=prob_info, sources_info=sources_info)

To extract the results of the optimization the user must execute:

12 Chapter 2. Using CVXMG
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summary=MicroGrid.resultsMG()

All the results are stored inside of the summary variable.

2.4 Methodology formulation

The problem that aims to solve CVXMG is to study the effects of Demand Side Management (DSM) strategies over
the planning of Islanded/Isolated Microgrids (IMGs). The study should consider the impact of the technical and
environmental aspects. The study will address regulatory aspects as well. This requires a methodology capable of:

• Integrate different energy sources for the IMG.

• Compute the sizing of the energy sources.

• Compute the energy dispatch of the energy sources.

• Consider the effects of the DSM over the lifetime of the project.

• Consider business models to recreate the real-life conditions of the development of IMG projects.

• Set the tariffs of the energy for the customers.

• Evaluate the impact of the DSM strategies over the planning of IMGs.

A methodology with the above characteristics does not exist in the reviewed literature. In this regard, CVXMG builds
a methodology to solve that.

2.4.1 Proposed solution

The proposed solution implements a multiyear-stochastic analysis using Disciplined Convex Stochastic Programming
(DCSP). DCSP builds on principles from stochastic optimization and convex analysis, representing a considerable
advantage to build the desired methodology [Ali2015]. Equation (2.1) presents the general formulation of a convex
stochastic problem:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐸(𝑎1(𝑥, 𝜉))

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐸(𝑏𝑖(𝑥, 𝜉)) = 0 𝑖 = 1, . . . , 𝐵

𝑐𝑖(𝑥, 𝜉) ≥ 0 𝑖 = 1, . . . , 𝐶(2.1)
(2.1)

where 𝑏𝑖 : R𝑛 × R𝑞 → R, 𝑖 = 1, . . . , 𝐵 are convex functions in 𝑥 for each value of the random variable 𝜉 ∈ R𝑞 ,
and 𝑐𝑖 : R𝑛 → R, 𝑖 = 1, . . . , 𝐶 are (deterministic) affine functions; since expectations preserve convexity, the
objective and inequality constraint functions in (2.1) are (also) convex in 𝑥, making (2.1) a convex optimization
problem [Ali2015], [Liberti2008].

2.4.2 Main assumptions

The formulation of the methodology assumes that the planner can have at least one year of historical data of weather
variables and electrical demand. The formulation use this historical data to build the multiyear, and multiyear-
stochastic analysis of the methodology by using a scenario construction technique.

The methodology assumes that there is no presence of smart or controllable loads in the IMGs. Considering this, it
is not possible to apply advanced DSM strategies for IMGs. Due to this limitation, the present study proposes to use

2.4. Methodology formulation 13
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price-based DSM strategies and one DSM strategy based on Direct Load Curtailment. Both kinds of DSM strategies
offer less technical difficulty as their more sophisticated counterparts.

The formulation also assumes that the planner can know the price elasticity of the demand of the customers. By
using the price elasticity of the customers’ demand, it is possible to compute how they will react to different stimuli.
Additionally, the price elasticity of the demand intrinsically implies that without any external stimulus, the customers
do not have any incentive to modify their consumption patterns. This assumption means that customers will not alter
their consumption patterns if the IMG uses a flat tariff.

2.4.3 Mathematical formulation

The formulation of the problem aims to minimize the total costs of the IMG project. The total costs of the project are
Capital Expenditures (𝜁), Operational Expenditures (𝜗), Maintenance Expenditures (𝜇) and Carbon Taxes Expendi-
tures (𝜑):

𝜁 =

𝑈∑︁
𝑢=1

𝐶𝑢𝐼𝑢(2.2)(2.2)

𝜗 =

𝑇∑︁
𝑡=1

𝑈∑︁
𝑢=1

𝜆𝑢,𝑡𝐸𝑢,𝑡(2.3)(2.3)

𝜇 =

𝑇∑︁
𝑡=1

𝑈∑︁
𝑢=1

Λ𝑢,𝑡𝐸𝑢,𝑡(2.4)(2.4)

Φ =

𝑇∑︁
𝑡=1

𝑈∑︁
𝑢=1

𝐵𝑢𝐹𝑢,𝑡(2.5)(2.5)

and 𝐶𝑢, 𝐼𝑢, 𝜆𝑢,𝑡, Λ𝑢,𝑡, 𝐸𝑢,𝑡, 𝐵𝑢 and 𝐹𝑢,𝑡 represent the installed capacity, unitary investment cost, unitary dispatch
costs, unitary maintenance costs, dispatched energy, carbon dioxide production by liter, and fuel consumption of the
𝑢 energy source at time 𝑡, respectively. 𝑇 represents the horizon of the optimization.

The mathematical formulation allows the planner to build all kinds of business models by considering that a 𝑖 ∈ 𝐼
number of different investors (𝜙) can fund the IMG project. These 𝑖 ∈ 𝐼 investors can contribute to pay capital (𝜙𝑖,𝜁),
operational (𝜙𝑖,𝜗) or maintenance (𝜙𝑖,𝜇) expenditures. The objective function captures the different sources of money
to fund the project:

𝑋1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐶𝑢,𝐸𝑢,𝑡

𝐼∑︁
𝑖=1

𝜙𝑖,𝜁𝜁 + 𝜙𝑖,𝜗𝜗+ 𝜙𝑖,𝜇𝜇+ 𝜙𝑖,𝜑𝜑(2.6)(2.6)
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The formulation considers the energy prices as the only revenue stream for the investors that aim to recover their
investment and have profits. If the business model has private investors ($varphi^{priv}$) the formulation allows to
guarantee an expected Rate of Return ($R$) using the following constraint:

(1 +𝑅)

𝑌∑︁
𝑦=1

(𝜙𝑝𝑟𝑖𝑣,𝜁𝜁𝑦 + 𝜙𝑝𝑟𝑖𝑣,𝜗𝜗𝑦 + 𝜙𝑝𝑟𝑖𝑣,𝜇𝜇𝑦 + 𝜙𝑝𝑟𝑖𝑣,𝜑𝜑𝑦) ≥
𝑌 𝑇∑︁
𝑡=1

𝜋𝑥,𝑡𝐷
𝑑𝑟
𝑡 (2.7)(2.7)

where $pi_{n,t}$ is the price of the energy at time $t$ using the $n$ DSM strategy, and $D_{t}^{dr}$ is the electrical
demand after the $x$ DSM strategy is applied. However, it is crucial to highlight that the horizon of this constraint is
the life time of the project. The life time of the project is measured in years ($Y$) for the sum in the left, and in hours
for the sum in the right ($Y$ multiplied by $T$).

Equation (2.8) uses the demand with flat tariff ($D_{t}^{flat}$) as the base demand, the flat tariff ($pi^{flat}$) as the
base price, the $x$ price ($pi_{x,t}$) as the DSM tariff, and the price-elasticity ($e_{t}$) of the customers to compute
the response of the demand $D_{t}^{dr}$.

𝑒𝑡 =
𝜋𝑓𝑙𝑎𝑡(𝐷𝑑𝑟

𝑡 −𝐷𝑓𝑙𝑎𝑡
𝑡 )

𝐷𝑓𝑙𝑎𝑡
𝑡 (𝜋𝑥,𝑡 − 𝜋𝑓𝑙𝑎𝑡)

(2.8)(2.8)

The formulation allows defining the changes in the total electrical demand after the introduction of the DSM using
factor $Psi^{c}$ in Equation (2.9). Factor $Psi^{c}$ is an input parameter that the planner choose according to the
conditions of the IMG project. Values $Psi^{c} leq 1$ decreases the total energy consumption, while values $Psi^{c}
geq 1$ increases the total energy consumption over the optimization horizon. A value $Psi^{c}=1$ indicates that the
total energy consumption over the optimization horizon remains constant after the introduction of DSM.

𝑇∑︁
𝑡=1

𝐷𝑑𝑟
𝑡 − Ψ𝑐

𝑇∑︁
𝑡=1

𝐷𝑓𝑙𝑎𝑡
𝑡 = 0(2.9)(2.9)

The formulation naturally includes the balance Equation:

𝑇∑︁
𝑡=1

𝑈∑︁
𝑢=1

𝐸𝑢,𝑡 − 𝐸𝐸𝑡 + 𝐿𝐸𝑡 −𝐷𝑑𝑟
𝑡 = 0(2.10)(2.10)

2.4. Methodology formulation 15



cvxmg, Release 2.0.0

where $EE_t$ and $LE_t$ are the excess and lack of energy. According to [Chauhan2014], [Diaf2008], the loss of
power supply probability (LPSP) is:

𝐿𝑃𝑆𝑃 =

∑︀𝑇
𝑡=1 𝐿𝐸𝑡∑︀𝑇
𝑡=1𝐷

𝑑𝑟
𝑡

(2.11)(2.11)

Similarly, Equation (2.12) defines the excess of power supply probability (EPSP) as:

𝐸𝑃𝑆𝑃 =

∑︀𝑇
𝑡=1𝐸𝐸𝑡∑︀𝑇
𝑡=1𝐷

𝑑𝑟
𝑡

(2.12)(2.12)

By using Equations (2.11) and (2.12) it is possible to create two constraints to control LPSP (2.13) and EPSP (2.14)
over the optimization horizon:

𝑇∑︁
𝑡=1

𝐿𝐸𝑡 ≤ 𝐿𝑃𝑆𝑃

𝑇∑︁
𝑡=1

𝐷𝑑𝑟
𝑡 (2.13)(2.13)

𝑇∑︁
𝑡=1

𝐸𝐸𝑡 ≤ 𝐸𝑃𝑆𝑃

𝑇∑︁
𝑡=1

𝐷𝑑𝑟
𝑡 (2.14)(2.14)

2.5 DSM integration into the sizing

The methodology integrates ToU, CPP, DADP, IBP, Fixed Shape Pricing (FSP) and DLCt as DSM strategies into the
sizing of the IMG. The baseline case for comparisons does not use a DSM strategy, it only uses a flat tariff. The
description of the baseline case and each of the DSM strategies proceeds in the following subsections [Celik2017].

2.5.1 Flat tariff (Baseline case):

In general terms, the value of a flat tariff is the sum of all the costs of producing the energy divided by the total amount
of energy produced [Inversin2000]. Equation (2.15) describes the yearly payments using a regular flat tariff.

Γ𝑓𝑙𝑎𝑡
𝑛 =

𝜁𝑦 + 𝜗𝑦 + 𝜇𝑦 + 𝜑𝑦∑︀𝑇
𝑡=1𝐷

𝑑𝑟
𝑡

(1 +𝑅)

𝑇∑︁
𝑡=1

𝐷𝑑𝑟
𝑛,𝑡(2.15)(2.15)
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However, this traditional approach does not set an optimal tariff to recover investments while minimizing energy costs.
Here we propose to introduce a decision variable 𝜋𝑓𝑙𝑎𝑡 into the formulation to find the optimum price for the tariff.

Γ𝑓𝑙𝑎𝑡
𝑛 = 𝜋𝑓𝑙𝑎𝑡

𝑇∑︁
𝑡=1

𝐷𝑑𝑟
𝑛,𝑡(2.16)(2.16)

2.5.2 Time of use tariff:

ToU tariffs vary daily or seasonally on a fixed schedule, using two or more constant prices [Baatz2017]. One of the
main benefits of this type of fare is its stability over long periods, which gives the customer a better ability to adapt to it
[Glick2014, Kostkova2013]_. To create a ToU tariff, the planner must define the number of 𝑍 blocks, and the starting
and ending hours of each 𝑧 block [Glick2014]. The optimization problem considers the prices 𝜋𝑧 of the 𝑍 number of
blocks as decision variables. The following figure shows the main components of a ToU tariff, and equation (2.17)
presents the yearly payments using 𝑍 different block hours of prices.

Γ𝑇𝑜𝑈
𝑛 =

𝑇∑︁
𝑡=1

𝑍∑︁
𝑧=1

𝜋𝑧𝐷
𝑑𝑟
𝑧,𝑛,𝑡(2.17)(2.17)
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2.5.3 Critical peak pricing:

CPP tariff can be 3 to 5 times higher than the usual tariff but is allowed only a few days per year [Kostkova2013]. In
Equation (2.18), 𝜋𝑏𝑎𝑠𝑒 is a scalar variable, that is chosen to be equal to the flat tariff 𝜋𝑓𝑙𝑎𝑡. 𝜋𝑝𝑒𝑎𝑘 is a decision variable
of dimension 𝑇 . Equation (2.18) defines the day-ahead forecasted payments using a CPP tariff, and Equation (2.19)
defines the day-ahead hourly critical peak price.

Γ𝐶𝑃𝑃
𝑛 =

𝑇∑︁
𝑡=1

(𝜋𝑏𝑎𝑠𝑒 + 𝜋𝑝𝑒𝑎𝑘
𝑡 )𝐷𝑑𝑟

𝑛,𝑡(2.18)(2.18)

𝜋𝐶𝑃𝑃
𝑡 = 𝜋𝑏𝑎𝑠𝑒 + 𝜋𝑝𝑒𝑎𝑘

𝑡 (2.19)(2.19)

A critical forecasted event as high demand or low generation capacity triggers the critical peak price in a CPP tariff.
In this regard, the CPP tariff must include a predictor of the critical event and a decision mechanism to set the value
of the critical price. The formulation uses historical data, which implies that the formulation has full knowledge over
the optimization horizon (T:=:8760:hours). The perfect knowledge allows the formulation to state constraint (2.20),
limiting the apparition of the critical price only to a few hours in a year. Equation (2.20) uses variable 𝜙𝑝𝑒𝑎𝑘, to control
the number of hours with critical price allowed and 𝛿𝑝𝑒𝑎𝑘 to define how many times the base price 𝜋𝑏𝑎𝑠𝑒 is scaled
up. The planner defines 𝜙𝑝𝑒𝑎𝑘 and 𝛿𝑝𝑒𝑎𝑘. 𝜋𝑏𝑎𝑠𝑒, 𝜋𝑝𝑒𝑎𝑘, 𝜏𝑏𝑎𝑠𝑒 and 𝜏𝑝𝑒𝑎𝑘 are decision variables that the optimization
formulation needs to compute.

𝑇∑︁
𝑡=1

𝜋𝑝𝑒𝑎𝑘,𝑡 ≤ 𝜙𝑝𝑒𝑎𝑘𝑇𝛿𝑝𝑒𝑎𝑘𝜋𝑏𝑎𝑠𝑒(2.20)(2.20)

2.5.4 Day ahead dynamic pricing:

DADP refers to a tariff that is announced one day in advance to customers and has hourly variations. This scheme
offers less uncertainty to customers than hour-ahead pricing or real-time pricing, thus allowing them to plan their
activities [Wong2012], [Borenstein2002]. Equation (2.21) introduces the payments under DADP tariff, using 𝜋𝑡 as a
decision variable vector of dimension 𝑇 .

Γ𝐷𝐴𝐷𝑃
𝑛 =

𝑇∑︁
𝑡=1

𝜋𝑡𝐷
𝑑𝑟
𝑛,𝑡(2.21)(2.21)
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2.5.5 Incentive-based pricing:

The IBP tariff provides discounts on the tariff to the customers to increase the electric energy consumption or an extra
fare to penalize it. The planner can decide the IBP base price to be equal to the flat tariff 𝜋𝑓𝑙𝑎𝑡 to guarantee a constant
value each day. Variable 𝜋𝑖𝑛𝑐,𝑡 computes the hourly incentives and can take positive or negative values. Equation
(2.22) defines the payments using the IBP tariff.

Γ𝐼𝐵𝑃
𝑛 =

𝑇∑︁
𝑡=1

𝐷𝑑𝑟
𝑛,𝑡(𝜋

𝑏𝑎𝑠𝑒 + 𝜋𝑖𝑛𝑐
𝑡 )(2.22)(2.22)

𝜋𝐼𝐵𝑃
𝑡 = 𝜋𝑏𝑎𝑠𝑒 + 𝜋𝑖𝑛𝑐

𝑡 (2.23)(2.23)

2.5.6 Fixed Shape Pricing:

Dole et al. affirm that tariffs must be simple, transparent, and predictable for the customers [Dole2004]. By follow-
ing these recommendations, it is possible to design a pricing scheme that combines the benefits of DADP with the
predictability of the ToU tariff. This pricing scheme receives the name of Fixed Shape Pricing (FSP). FSP tariffs
can provide more stimulus than the ToU tariff. However, the FSP tariff has the same predictability of the ToU tariff.
Although the FSP tariff will not be as simple as the ToU, it will be simpler for the customers than DADP tariffs.

The FSP tariff fixes one price for each hour over all the days of the year. FSP tariff does not reflect the real costs of
producing electricity in the IMG, which is a drawback. However, in the long run, the FSP tariff might offer better
results than the ToU pricing. Additionally, it might be easier to accept by the IMG customers than the DADP tariff.

To build the FSP tariff the methodology assigns one variable for each hour of the day. All these variables are one-
dimensional. By using these variables the methodology builds a vector of 24 positions, and repeat it till reaching the
optimization horizon. The resulting vector is the price of the tariff. Equation (2.24) shows the payments of the 𝑛
customer when the planner choose to use the FSP tariff as DSM strategy.

Γ𝐹𝑆𝑃
𝑛 =

𝑇∑︁
𝑡=1

24∑︁
ℎ=1

𝜋𝐹𝑆𝑃
ℎ 𝐷𝑑𝑟

𝑛,𝑡(2.24)(2.24)

All the tariffs must have restrictions to avoid null or excessive pricing. Governments, policymakers, or IMG owners
can guarantee fair fares to the customers with the following constraint:

𝜋𝑚𝑖𝑛 ≤ 𝜋𝑥 ≤ 𝜋𝑚𝑎𝑥(2.25)(2.25)

2.5. DSM integration into the sizing 19



cvxmg, Release 2.0.0

2.5.7 Direct Load Curtailment Strategy:

The DLCt strategy curtails a portion 𝜖𝑡 out of the demand if required. The planner of the IMG decides the percentage
of max curtailed hourly demand 𝜃, and the percentage of the total energy curtailed in the optimization period 𝜅. The
final demand and payments are defined as follows:

𝐷𝑑𝑟
𝑡 = 𝐷𝑓𝑙𝑎𝑡

𝑡 − 𝜖𝑡(2.26)(2.26)

Γ𝐷𝐿𝐶𝑡
𝑛 =

𝑇∑︁
𝑡=1

𝐷𝑑𝑟
𝑛,𝑡𝜋

𝑓𝑙𝑎𝑡(2.27)(2.27)

The general restrictions for the DLCt strategy are defined as follows:

𝜖𝑡 ≤ 𝜃𝐷𝑑𝑟
𝑡 (2.28)(2.28)

𝑇∑︁
𝑡=1

𝜖𝑡 ≤ 𝜅

𝑇∑︁
𝑡=1

𝐷𝑑𝑟
𝑡 (2.29)(2.29)

It is important to notice that Equation (2.9) establish a constraint to guarantee that the sum of the demand with flat
tariff (base case) is equal to the sum of the demand after the application of any of the DSM strategies. However, the
DLCt strategy need to violate this constraint, otherwise the only way to guarantee that the base case demand is equal
to the demand with DSM is by making the variable 𝜖𝑡 equal to zero. In order to avoid making 𝜖𝑡 equal to zero the
methodology removes constraint (2.9) for the DLCt DSM strategy.

2.6 Multiyear analysis

Most of the methodologies found in literature to compute the sizing of IMGs consider one single year for the anal-
ysis. However, by considering this, these methodologies are implicitly assuming that the capital, operational, and
maintenance expenditures will remain constant during the lifetime of the projects (20 to 25 years). These kinds of
methodologies only consider the interest rate to compute future values of capital, operational, and maintenance. Nev-
ertheless, this is not a straightforward justifiable assumption, especially considering that renewable energy sources’
costs are decreasing fast in the last years. Moreover, new policies taxing carbon emissions can significantly benefit
renewable energy projects in the future. To have a better understanding of the variations in prices in the future, the
following figure is introduced.
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Hint:

• BESS capital expenditures [atb_data],

• PV capital expenditures [atb_data],

• Wind capital expenditures [atb_data],

• Diesel generator capital expenditures.

• Diesel price [energy_outlook],

• Carbon Tax price [tax_data].

These figures shows the trends in capital expenditures for different energy sources for the following years. By using
a multiyear analysis, it is possible to capture those trends in the prices. However, a methodology that uses one single
year approach can not incorporate these trends. This assumption does not seem appropriate for future replacements of
the energy sources.

Reference [Pecenak2019] classifies multiyear methodologies in two main categories: the forward-looking model and
the adaptive model. On one side, the forward-looking model deals with an optimization formulation that has as a
horizon the lifetime of the IMG project (20 to 25 years). This approach has the advantage of being able to integrate
future information. However, the enormous size of the optimization formulation can make the problem difficult to
solve. Additionally, the formulation will require binary variables to integrate the technologies’ replacement, which
adds even more complexity to the problem. On the other side, the adaptive model uses a rolling horizon of smaller
windows of time (usually one year). This approach does not require binary variables, which represents an advantage.
The model easily integrates growth of demand, price forecasts, and energy resources. Additionally, this approach does
not require to modify the optimization formulation. Instead, it solves a single year optimization until it reaches the
project’s lifetime.

CVXMG chooses to work with the adaptive method. However, despite its advantages, the implementation of the model
requires careful attention to previous years’ input parameters. The investment decisions of previous years should be
known for the model in each window of time. The following algorithm shows a simplified step by step guide for the
multiyear analysis. The following lines provide a brief description of each line of the algorithm.

MultiyearDSMS

Inputs: Weather, forecasted acquisition prices of energy sources, forecasted fuel
→˓prices over the lifetime of the IMG project.
Outputs: Tariffs of energy, yearly acquisition, yearly dispatch of energy sources
→˓over the life time of the IMG project.

prob_info = Set problem information
historic_data = Save historic weather, save demand data
synthetic_data = create_synthetic_data(historic_data)
for year = 0 in range(lifetime):

prev_data = Read results of previous years
act_param = Actualize solver parameters
resul = yearly_solver(prob_info, synthetic_data[year], prev_data, act_param)
summary[year] = resul

2.6.1 Set problem information

This line saves the configuration of the analysis in the variable prob_info. This variable contains a list of the energy
sources that the optimization includes, the technical and economic characteristics of those energy sources, the lifetime
of the project, and interest rate. This variable contains all the information about the multiyear analysis.
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2.6.2 Save historic weather and demand data:

This line reads the historic weather and electrical demand data. Afterwards the data is stored in the variable his-
toric_data.

2.6.3 create_synthetic_data(historic_data):

This line creates the synthetic data for the multiyear optimization formulation. A single year approach can use the
historical data (of one year). However, to build the multiyear optimization formulation, synthetic data is required for
the project’s lifetime. The function create_synthetic_data takes as inputs the historical data of weather and electrical
demand profiles (one year) and returns as output the synthetic data over the lifetime of the project (20 or 25 years).
The function follows a four-step process to create synthetic data for the optimization formulation:

1. Divide the historical data by months.

2. Take the data of each month and group it by hours.

3. Fit each hour group to the probability distributions recommended by the literature to each kind of data (Weibull
for wind, Beta for Global Horizontal Radiation, log-normal for the demand, amongst others).

4. Build the synthetic new profiles by random sampling the fitted probability distributions at each hour and month.

The above-described process is similar to a Gaussian process without a covariance matrix. Two main reasons force
to adopt the above-described process and not the well know Gaussian process. The first reason is that the Gaussian
process can model only processes that follow a Gaussian distribution. This limitation forces the study to assume that
the wind and Global Horizontal Radiation (GHI) follow a Gaussian distribution, which is not accurate. The second
reason is that fitting and sampling a Gaussian process consume more computational power and requires more time to
build synthetic data than the above-described process. Equation (2.30) describes the sampling process to create the
synthetic data.

𝑆𝐷𝑡|𝑚,ℎ ∼ 𝑓(𝜓𝑚,ℎ)(2.30)(2.30)

where 𝑆𝐷𝑡 represents the Synthetic Data at time 𝑡. This variable represents the electrical demand, wind speed,
global horizontal radiation, temperature, and others. 𝜓𝑚,ℎ represents the monthly/hourly fitted distributions using the
historical data.

2.6.4 Read results of previous years:

This line read the results of the previous years and store the values in variable prev_data. This variable contains the
capacities of the energy sources acquired in the past. Additionally, this variable contains a detailed register of the costs
paid for buying those energy sources in previous years.

2.6.5 Actualize solver parameters:

This part of the algorithm actualizes the cost parameters of the solver. These parameters include the acquisition costs
of the energy sources and the fuel costs of that year in particular.
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2.6.6 yearly_solver(prob_info, synthetic_data[year], prev_data, act_param):

The function 𝑦𝑒𝑎𝑟𝑙𝑦_𝑠𝑜𝑙𝑣𝑒𝑟 contains the formulation described at the beginning of this section (Equations (2.2) to
(2.29)). This function solves the DCSP optimization formulation for over one year. This function returns the capacities
of the energy sources to install in that year, the dispatch of the energy sources and the energy tariffs for the customers.
Additionally, this function returns the payments of each one of the stakeholders of the project.

2.6.7 summary[year] = resul:

This line save the results of 𝑦𝑒𝑎𝑟𝑙𝑦_𝑠𝑜𝑙𝑣𝑒𝑟. Summary is a list that contains the results of each year.

2.7 Stochastic multiyear analysis

The study proposes a stochastic analysis to deal with the uncertainties of electric demand, weather variables, and future
prices. The stochastic approach uses a Montecarlo Sampling (MCS) approach. The MCS approach creates random
samples of the probability distribution functions using Equation (2.30) to build the scenarios. The following algorithm
describes the multiyear stochastic analysis.

Inputs: Weather, forecasted acquisition prices of energy sources, forecasted fuel prices over the lifetime of the IMG
project. Outputs: Tariffs of energy for the customers, average yearly acquisition, yearly dispatch of energy sources
over the life time of the IMG project.

prob_info = Set problem information
historic_data = Save historic weather and demand data
synthetic_data = create_synthetic_data(historic_data)

for scenario in range(scenarios):
for year in range(lifetime):

prev_data = Read results of previous years
act_param = Actualize solver parameters
resul = yearly_solver(prob_info, synthetic_data[year], prev_data, act_param)
summary[year] = resul

total_summary[scenario] = summary

The above algorithm uses the multiyear analysis in its core. The only difference with the multiyear analysis is an
additional loop. The stochastic multiyear solves one multiyear problem for each scenario that the MCS approach
builds. Variable summary stores the results of installing and operating the IMG each year of the simulations. Variable
total_summary stores the results of installing and operating each of the scenarios of the stochastic analysis. In the end,
the results are the average of all the simulations.

2.8 Energy sources models

2.8.1 Photovoltaic system

References [Li2017], [Zhang2016], [lasnier1990] describe the output power 𝐸𝑃𝑉,𝑡 of a 𝑁𝑃𝑉 number of photovoltaic
panels as:

𝐸𝑃𝑉,𝑡 = 𝑁𝑃𝑉 𝜌𝑃𝑉 𝑃𝑆𝑇𝐶
𝐺𝐴,𝑡

𝐺𝑆𝑇𝐶
(1 + 𝐶𝑇 (𝑇𝐶,𝑡 − 𝑇𝑆𝑇𝐶))(2.31)(2.31)
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where 𝜌𝑃𝑉 , 𝑃𝑆𝑇𝐶 , 𝐺𝐴,𝑡, 𝐺𝑆𝑇𝐶 , and 𝐶𝑇 are the derating factor (unitless), output power of the PV module (𝑘𝑊 ), GHI
(𝑘𝑊/𝑚2), GHI at standard conditions (𝑘𝑊/𝑚2), and temperature coefficient of the PV module (%/∘𝐶), respectively.
𝑇𝐶,𝑡 is the working temperature of the PV cell at hour 𝑡 (∘𝐶), and 𝑇𝑆𝑇𝐶 is the temperature at standard conditions
(∘𝐶). Reference [Skoplaki2009] describes 𝑇𝐶,𝑡 as a function of the ambient temperature and incident solar radiation
over the PV module.

𝑇𝐶,𝑡 = 𝑇𝐴,𝑡 +
𝐺𝐴,𝑡

𝐺𝑁𝑂𝐶𝑇
(𝑇𝑁𝑂𝐶𝑇 − 𝑇𝑎,𝑡,𝑁𝑂𝐶𝑇 )(2.32)(2.32)

where 𝐺𝑁𝑂𝐶𝑇 , 𝑇𝑁𝑂𝐶𝑇 and 𝑇𝑎,𝑡,𝑁𝑂𝐶𝑇 are the solar radiation (𝑘𝑊/𝑚2), working temperature (∘𝐶) and ambient
temperature (∘𝐶) at Nominal Operational Cell Temperature (NOCT) conditions [Duffie2013], [librosolar].

2.8.2 Battery energy storage system

A battery is an element strongly coupled in time [Xiaoping2010]. The lack or excess of energy in one hour can
be demanded or stored in the battery. To guarantee that the battery is not charged and discharged simultaneously,
the BESS model can integrate binary variables. However, as discussed before, the proposed methodology tries to
avoid using binary variables. The methodology proposes to model the BESS as an accumulator to avoid using binary
variables. The battery is a deposit to store something temporarily. The deposit can charge if there is still space
available, and discharge when required. Operations Research modeled this problem long before, and it is well known
as the inventory problem [Silver2008].

The model of the BESS does not use separate optimization variables for charging and discharging of the BESS. Instead
uses one single variable for the dispatch that controls the residual energy of the battery [Zhang2018ab]. Equation (2.33)
presents a simple way of defining the residual energy in a BESS.

𝑅𝐸𝐵,𝑡 = 𝑆𝑂𝐶𝑡𝐶𝐵(2.33)(2.33)

If the following state of the residual energy is superior to the previous, the battery was charged 𝐸𝐵,𝑡 units during time
𝑡. If the following state of the residual energy is inferior to the previous, the battery was discharged 𝐸𝐵,𝑡 units during
time 𝑡. Equations (2.34) and (2.35) show this.

𝑅𝐸𝐵,𝑡+1 = 𝑅𝐸𝐵,𝑡 + 𝐸𝐵,𝑡(2.34)(2.34)

𝑅𝐸𝐵,𝑡+1 = 𝑅𝐸𝐵,𝑡 − 𝐸𝐵,𝑡(2.35)(2.35)
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Equation (2.36) describes the initial residual energy of the BESS. The simulations assume that the battery starts half
charged (50% of its nominal capacity). Additionally, the simulation assumes that the minimum level of discharge of the
battery is 50% and that the maximum level of charge is 100% of its nominal capacity. Equation (2.37) describes those
limits. Moreover, the simulations consider the maximum rate of charge and discharge of the battery. The simulation
assumes that the maximum charge and discharge rate in each time slot is 30% of its nominal capacity. For all the
simulations, the slot of time is one hour. Equation (2.38) and (2.39) describes the limits of charge and discharge of the
battery for each time slot, respectively.

𝐸𝐵,0 = 0.5𝐶𝐵(2.36)(2.36)

0.5𝐶𝐵 ≤ 𝑅𝐸𝐵,𝑡 ≤ 𝐶𝐵(2.37)(2.37)

𝐸𝐵,𝑡+1 ≥ 𝐸𝐵,𝑡 − 0.3𝐶𝐵(2.38)(2.38)

𝐸𝐵,𝑡+1 ≤ 𝐸𝐵,𝑡 + 0.3𝐶𝐵(2.39)(2.39)

2.8.3 Diesel generator

The fuel consumption of a diesel generator is a function of its capacity and output power. This function uses linear
or quadratic formulations [Arun2008], [Ashok2006]. Reference [Scioletti2017] makes a quadratic fit to estimate 𝛼,
𝛽, and 𝛾 parameters as a function of the capacity of the generator using manufacturer-provided fuel consumption
data. Bukar et al. use a linear approximation to describe the diesel consumption of a Diesel Generator [Bukar2019].
Equation (2.40) describes the function that [Bukar2019] use.

𝐹𝐷𝐺,𝑡 = 0.246𝐸𝐷𝐺,𝑡 + 0.08415𝐶𝐷𝐺𝑠(2.40)(2.40)

where, 𝐸𝐷𝐺,𝑡, 𝐹𝐷𝐺,𝑡, and 𝐶𝐷𝐺 denote the generated power (kW), the fuel consumption (L/hour), and the installed
capacity (kW) of the diesel generator.

subsection{Wind generator}
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The output power of a wind turbine is a function of the wind speed and its rated capacity. Equation (2.41) presents
a well-accepted model to compute the output power of a wind turbine [Ramli2018], [Kaabeche2017]. The proposed
methodology uses this model.

𝐸𝑊𝑇 =

⎧⎪⎪⎨⎪⎪⎩
0, 𝑉𝐴,𝑡 < 𝑉𝑐𝑢𝑡−𝑖𝑛, 𝑉𝐴,𝑡 > 𝑉𝑐𝑢𝑡−𝑜𝑢𝑡

𝑉 3
𝐴,𝑡

(︁
𝐸𝑊𝑇,𝑅

𝑉 3
𝑅𝑎𝑡𝑒𝑑−𝑉 3

𝑐𝑢𝑡−𝑖𝑛

)︁
− 𝐸𝑊𝑇,𝑅

(︁
𝑉 3
𝑐𝑢𝑡−𝑖𝑛

𝑉 3
𝑅𝑎𝑡𝑒𝑑−𝑉 3

𝑐𝑢𝑡−𝑖𝑛

)︁
, 𝑉𝑐𝑢𝑡−𝑖𝑛 ≤ 𝑉𝐴,𝑡 < 𝑉𝑅𝑎𝑡𝑒𝑑

𝐸𝑊𝑇,𝑅, 𝑉𝑅𝑎𝑡𝑒𝑑 ≤ 𝑉𝐴,𝑡 < 𝑉𝑐𝑢𝑡−𝑜𝑢𝑡

(2.41)(2.41)

𝑉𝑐𝑢𝑡−𝑖𝑛 ≤ 𝑉𝐴,𝑡 < 𝑉𝑅𝑎𝑡𝑒𝑑𝐸𝑊𝑇,𝑅,

(2.41)

where 𝑉𝐴,𝑡 is the wind speed (m/s), 𝐸𝑊𝑇,𝑅 is the rated power (kW), 𝑉𝑐𝑢𝑡−𝑖𝑛, 𝑉𝑅𝑎𝑡𝑒𝑑, 𝑉𝑐𝑢𝑡−𝑜𝑢𝑡 represent the cut-in,
nominal and cut-out speed of the wind turbine (m/s), respectively.

2.9 Classes, Objects, and Methods of CVXMG

2.10 References

In here the list of references used in this documentation:
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